
STS properties of defective metallic carbon nanotubes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 8617

(http://iopscience.iop.org/0953-8984/12/40/306)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 8617–8622. Printed in the UK PII: S0953-8984(00)15569-9

STS properties of defective metallic carbon nanotubes

Feng Wei†, Jia-Lin Zhu†‡ and Hao-Ming Chen†
† Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
‡ Center for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China

Received 11 July 2000, in final form 29 August 2000

Abstract. The influence of point defects on the scanning tunnelling spectroscopic property of
metallic carbon nanotubes is studied theoretically. The tight-binding model and Green’s function
method are applied to simulate the local density of states. A resonant state is induced by a
strong defect which depends on the nanotube diameter rather than chirality. The corresponding
spectroscopic image shows a highly localized state around the defect and gives some unique
characteristics of point defects. The local density of states image is found to relate to the nanotube
chirality.

1. Introduction

Since Iijima’s observation in 1991 [1], carbon nanotubes have been the subject of an
increasing number of experimental and theoretical studies due to their quasi-one-dimensional
structure and unique electronic property [2]. Among the detecting techniques, scanning
tunnelling microscopy (STM), and in particular, scanning tunnelling spectroscopy (STS)
may be very powerful tools with which to investigate not only the morphology of individual
carbon nanotubes, but also the electronic properties. Previous STM and STS studies [3, 4]
have confirmed the prediction [5] that carbon nanotubes can be metallic or semiconducting
depending on the tube diameter and chiral angle between the tube axis and hexagon rows in
the atomic lattice. The electron standing waves in finite-size metallic carbon nanotubes [6]
and the electronic properties of capped, doped, and connected tubes [7, 8] have recently been
studied by STM and STS.

The theoretical works on STM and STS properties mainly concerned defects on nanotubes
both in the absence and presence of additional carbon atoms [9, 10]. Orlikowski et al [10],
for instance, have calculated that there would be a set of bright rings in the STM images,
whose positions correlate with the location of the pentagons within the defect. Other kinds
of topological defects, such as point defects, which represent incomplete bonding [11] also
have a significant effect on the electric properties of carbon nanotubes. Current calculations of
transport properties have suggested that the point defects are of great importance in the one-
dimensional systems which can induce a considerable amount of scattering [12, 13]. Therefore,
it is interesting to show how the defects influence the electronic structure which relate to
transport properties. We believe that the STM and STS will remain the primary means of
actually identifying and visualizing the defects.

In this paper, we investigate the influence of point defects on the electrical local density of
states (LDOS) that is proportional to the differential conductance dI/dV detected in STS [14].
The tight-binding (TB) model and the Green’s function method have been used to accomplish
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the calculation, since it is proved to be valid for states a few tenths of an eV above or below the
Fermi level by previous ab initio calculations [15]. We find that a resonant state is induced at
the defective point. The position and width of the resonant state are expressed in terms of two
universal relationships depending only on the nanotube diameter which is verified by numerical
calculations. The analytical results provide a reference by which to discuss more complex and
realistic defects in carbon nanotubes. The LDOS around the defect are also mapped which
show a highly localized state and the chirality is embodied in these images. Though many
of the defects are quite complex, and the interactions stemming from tube packing or the
tube/substrate/tip [16, 17] make the explanation more involuted, the LDOS properties of point
defects will hopefully provide an important guide for experimental investigation.

2. Formulation

The metallic carbon nanotubes with one point defect at the A or B sublattice site are studied.
The total Hamiltonian is as follows

H = H0 + Hdef (1)

where H0 are the electronic states of defect-free carbon nanotubes based on the π -electron TB
model [18], and Hdef is the point defect.

The two Bloch functions, constructed from atomic orbitals for the two inequivalent
carbon atoms at sites A and B, provide the basis functions for single-walled carbon nanotubes
(SWCNT) as well as for two-dimensional graphite. The Hamiltonian in the secondly quantized
representation has the following form

H0 =
∑

k

�+
kEk�k (2)

where �k is an annihilation operator with two components:

�k =
(
CkA

CkB

)
.

CkA and CkB are for the A and B Bloch functions, separately. k covers the Brillouin zone
(BZ) of the carbon nanotube. Ek is an energy matrix:

Ek =
(

0 γ0f (k)

γ0f
∗(k) 0

)
(3)

where γ0(∼ −2.5 eV) is the nearest-neighbour interaction. f (k) is the sum of the phase factor
of eik·Rj (j = 1, 2, 3) with Rj the three nearest-neighbour B atoms relative to an A atom, and
∗ denotes the complex conjugate.

The second term in equation (1) is the point defect

Hdef =
(

2

Ns

)∑
k,k′

�+
kU�k′ (4)

where Ns is the total lattice number. U is the defect matrix:

U =
(
Vdef 0

0 0

)
(5)

with Vdef the defect strength. Here we assume that the defect is at an A site.
The propagator of the electrons on the nanotube is defined in the matrix form

Gk,k′(τ, τ ′) = −〈Tτ�k(τ )�
+
k(τ

′)〉 (6)
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Figure 1. The DOS at the defect point in an armchair
(10, 10) nanotube with defect strength 100γ0. The full
curve shows the DOS of the defective nanotube, while
the broken curve is the DOS of a perfect one. A resonant
state appears at ω = −0.012γ0 in contrast to the metallic
plateau for a perfect nanotube.

Figure 2. The same as in figure 1 for a zigzag (18, 0)
nanotube.

where Tτ is the time ordering operator with respect to the imaginary time τ and �k(τ ) =
exp(Hτ)�k exp(−Hτ). The Fourier transformation of G is calculated as

iωnGk,k′(iωn) = δk,k′ + Gk,k′(iωn)Ek′ +

(
2

Ns

)∑
k′′

Gk,k′′(iωn)U (7)

where ωn is the odd Matsubara frequency for fermions. The retarded Green’s function
can be obtained from equation (7) by changing iωn to ω + i0+ which is called an analytic
continuation [19]. To discuss the LDOS property, we transform the Green’s function from k

space to real space

Gret (r, r
′, ω) = G

(0)
ret (r, ω) + G

(0)
ret (r, ω)

(
1

1 − UG
(0)
ret (0, ω)

U

)
G

(0)
ret (−r′, ω+). (8)

Define

T (ω) = 1

1 − UG
(0)
ret (0, ω)

U. (9)

The LDOS can be expressed as:

ρLDOS(r, ω) = − 1

π
Im [T r(Gret (r, r, ω)]. (10)

Note all the above ω represent ω + i0+. Here the detailed structure of the atomic wavefunction
is not considered as the previous experiment [6] suggests that the lattice periodicity is largely
compensated when the STM tip follows the atomic corrugation by scanning in constant-current
mode in order to map the local density of states.

3. Results and discussion

Two metallic carbon nanotubes, the armchair (10, 10) and the zigzag (18, 0), with diameter
1.3–1.4 nm, have been investigated. We study a single vacancy which can be simulated as an
extremely strong defect, about 108 × γ0, according to [13]. However, to explain the results
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credibly, we have the defect strength 100γ0 and as we will see below, the STS properties of
defect strengths 100γ0 and 108 × γ0 are of little difference. The full curve in figure 1 shows
the density of states (DOS) at the defect-present point of the defective (10, 10) nanotube in
contrast with the dashed curve which is the DOS of the perfect one. Figure 2 is for the (18, 0)
nanotube. In both graphs, a resonant state appears near the Fermi energy ε = 0 where it is
originally a metallic plateau for a perfect nanotube. According to equation (8), the extremum
of T (ω) determines where the resonant state is. We write its component explicitly as

T (ω) = 1

1/Vdef − (2/Ns)
∑

k(ω/(ω
2 − γ 2

0 |f (k)|2))
(

1 0
0 0

)
(11)

noting that ω represents ω + i0+.
Accordingly the zero of

1

Vdef
− Re

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)

determines the energy of the resonance solution. The real part of

2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

can be related to its imaginary part through the Kramers–Kronig relations

Re

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)
= 1

π

∫ ∞

−∞
dω′ Im

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)
P

1

ω′ − ω
. (12)

According to equations (8) and (10), the imaginary part is proportional to the DOS of the
perfect nanotube:

Im

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)
= −π

2
ρ0(ω). (13)

ρ0(ω) is estimated from [20] which gives a universal relationship

ρ0(ω) = 2

π

1

|γ0|
a

L

∞∑
l=−∞

g(ω, εl) (14)

where a is the lattice constant of two-dimensional graphite, L is the length of circumference,
and

εl = π√
3
|γ0| a

L
|3l| (15)

g(ω, εl) =
{

|ω|/
√
ω2 − ε2

l |ω| > εl

0 |ω| < εl .
(16)

For energies ω � √
3π |γ0|a/L, considering first-order approximation, the real part can be

written as

Re

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)
= − ω

|γ0|2
{

4
√

3

π2

N∑
n=1

[
π

6n
− 1

3n
arcsin

(
n

N

)]
+

2

3

a

πL

}
(17)

with N the nearest integer to (
√

3/π)(L/a). Equation (17) can be simplified as

Re

(
2

Ns

∑
k

ω

ω2 − γ 2
0 |f (k)|2

)
= cω/|γ0|2.
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Figure 3. Local density of states (in grey scale) against
the position along the circumferential direction (y-axis)
and translational direction (x-axis) at the resonant state
energy for a (10, 10) nanotube.

Figure 4. The same as in figure 3 for a (18, 0) nanotube.

For the two nanotubes of diameter 1.3–1.4 nm, the proportional coefficient c is about
−0.8–−0.9 which is in good agreement with the numerical integral in the range
[−0.3γ0, 0.3γ0]. When Vdef is of the value 100γ0, the resonant state energy is −0.012γ0

which can be testified in the two graphs. For larger Vdef , the resonant state energy is closer to
zero, and the essential STS properties are the same. The position of the resonance state can be
obtained in experiments by adjusting the bias voltage between the STM tip and samples. Next,
equation (11) is examined again to find the state width. From equations (13) and (14), the
imaginary part is a constant of the value −a/L|γ0|in the region |ω| < √

3π |γ0|a/L, therefore,
the width of the resonant state is

/ = 2a

cL
|γ0| (18)

with the value about 0.13|γ0|–0.14|γ0| which is consistent with that in figures 1 and 2. In
metallic tubes, the defect-induced resonant state energy and the state width completely depend
on tube diameter while tube chirality is trivial. What is more, the state width is a constant
for large defect strength. The peak of the differential conductance was also observed in other
works, such as [10] and [21].

Figures 3 and 4 depict the LDOS around the defect point at the resonant state energy for an
armchair (10, 10) and zigzag (18, 0), respectively. As already mentioned, under the constant-
current scanning mode, the localized state can be resolved in the spectroscopy measurements
because the lattice periodicity is largely compensated when the STM tip follows the atomic
corrugation [6]. In the two graphs the length of 20a along the translational direction and the
whole circumference around the defect are mapped. The LDOS decays rapidly along both
directions which confirms that a localized state appears at the resonant energy. Additionally,
there is a fluctuation of the periodicity of about 1.5a along the translational direction for the
armchair nanotube while along the circumferential direction for the zigzag nanotube. The
quantity LDOS is a measure of the squared amplitude of the localized electron wavefunction
|�(r)|2 expressed as:

ρLDOS(r, ω) =
∑
i

|�i(r)|2δ(Ei − E) (19)

where �i and Ei are the electron wavefunction and the eigenvalue of state i, respectively.
Since the resonant energy is close to the Fermi energy, the wavevector is nearly the Fermi
wavevector |kF | = 2π/3a. What is more, kF is in the translational direction for armchair
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nanotubes, in the circumferential direction for the zigzag and has magnitude in both directions
for other types of metallic nanotubes [22]. Equation (19) indicates that the LDOS periodicity
is half of the Fermi wavelength.

In summary, a study of the STS of metallic carbon nanotubes with large strength point
defect have been presented. Within a simple TB model the Green’s function of an armchair
and zigzag nanotube was calculated. Through an analytic treatment, the defect-induced
resonant state was found to be determined by the nanotube diameter rather than chirality.
The numerically simulant STS verified the localized state in real space. This suggests that
the STM and STS can provide more details with which to identify the type and position of
defects in contrast to other measurements such as the conductance signature. It is believed
that the experiments necessary to obtain detailed information about the defects of carbon
nanotubes should become achievable before long, with the aid of nanomanipulators and other
such devices [23, 24]. Theoretical investigations are indispensable in explaining the results.
In order to reach a full understanding of the effects of defects, it is necessary to carry on more
precise calculations and consider a variety of defects.
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